CS474 Natural Language Processing

- Last week
 - SENSEVAL
 - Noisy channel model
 - » Pronunciation variation in speech recognition
- Today
 - Noisy channel model
 - » Decoding algorithm
 - Introduction to generative models of language
 - » What are they?
 - » Why they're important
 - » Issues for counting words
 - » Statistics of natural language

Noisy channel model

- Channel introduces noise which makes it hard to recognize the true word.
- **Goal:** build a model of the channel so that we can figure out how it modified the true word...so that we can recover it.

Decoding algorithm

- Special case of Bayesian inference
 - Bayesian classification
 - » Given observation, determine which of a set of classes it belongs to.
 - » Observation
 - string of phones
 - » Classify as a
 - word in the language

Pronunciation subproblem

- Given a string of phones, O (e.g. [ni]), determine which word from the lexicon corresponds to it
 - Consider all words in the vocabulary, $\ensuremath{\textit{V}}$
 - Select the single word, w, such that
 P (word w | observation O) is highest

 $\hat{w} = \underset{w \in V}{\operatorname{arg\,max}} P(w \mid O)$

Bayesian approach

 Use Bayes' rule to transform into a product of two probabilities, each of which is easier to compute than P(w|O)

$$P(x \mid y) = \frac{P(y \mid x) \quad P(x)}{P(y)}$$

$$\hat{w} = \underset{w \in V}{\operatorname{arg\,max}} \quad \frac{P(O \mid w)}{P(W)} \quad P(w)$$

Computing the prior

- Using the relative frequency of the word in a large corpus
 - Brown corpus and Switchboard Treebank

w	freq(w)	P(w)		
knee	61	.000024		
the	114,834	.046		
neat	338	.00013		
need	1417	.00056		
new	2625	.001		

Probabilistic rules for generating pronunciation likelihoods

- Take the rules of pronunciation (see chapter 4 of J&M) and associate them with probabilities
 - Nasal assimilation rule
- Compute the probabilities from a large labeled corpus (like the transcribed portion of Switchboard)
- Run the rules over the lexicon to generate different possible surface forms each with its own probability

Sample rules that account for [ni]

Word	Rule Name	Rule	Р
the	nasal assimilation	$\delta \Rightarrow n / [+nasal] #$	[.15]
neat	final t deletion	$t \Rightarrow 0 / V \{\#}$	[.52]
need	final d deletion	$d \Rightarrow 0 / V = #$	[.11]
new	u fronting	$u \Rightarrow i / _ \# [v]$	[.36]

Final results

- new is the most likely
- Turns out to be wrong
 - "I [ni]…"

w	p(y w)	p(w)	p(y w)p(w)
new	.36	.001	.00036
neat	.52	.00013	.000068
need	.11	.00056	.000062
knee	1.00	.000024	.000024
the	0	.046	0

CS474 Natural Language Processing

- Last week
 - SENSEVAL
 - Noisy channel model
 - » Pronunciation variation in speech recognition
- Today
 - Noisy channel model
 - » Decoding algorithm
 - Introduction to generative models of language
 - » What are they?
 - » Why they're important
 - » Issues for counting words
 - » Statistics of natural language

Motivation for generative models

- Word prediction
 - Once upon a...
 - I'd like to make a collect...
 - Let's go outside and take a...
- The need for models of word prediction in NLP has not been uncontroversial
 - But it must be recognized that the notion "probability of a sentence" is an entirely useless one, under any known interpretation of this term. -Noam Chomsky (1969)
 - Every time I fire a linguist the recognition rate improves. -Fred Jelinek (IBM speech group, 1988)

Why are word prediction models important?

- Augmentative communication systems
 - For the disabled, to predict the next words the user wants to "speak"
- Computer-aided education
 - System that helps kids learn to read (e.g. Mostow et al. system)
- Speech recognition
 - Use preceding context to improve solutions to the subproblem of pronunciation variation
- Lexical tagging tasks
- ...

Why are word prediction models important?

- Closely related to the problem of computing the probability of a sequence of words
 - Can be used to assign a probability to the next word in an incomplete sentence
 - Useful for part-of-speech tagging, probabilistic parsing

N-gram model

- Uses the previous N-1 words to predict the next one
 - 2-gram: bigram
 - 3-gram: trigram
- In speech recognition, these statistical models of word sequences are referred to as a language model

Counting words in corpora

- Ok, so how many words are in this sentence?
- Depends on whether or not we treat punctuation marks as words
 - Important for many NLP tasks
 - » Grammar-checking, spelling error detection, author identification, part-of-speech tagging
- Spoken language corpora
 - Utterances don't usually have punctuation, but they do have other phenomena that we might or might not want to treat as words
 - » I do uh main- mainly business data processing
 - Fragments
 - Filled pauses
 - » *um* and *uh* behave more like words, so most speech recognition systems treat them as such

Counting words in corpora

- Capitalization
 - Should They and they be treated as the same word?
 - » For most statistical NLP applications, they are
 - » Sometimes capitalization information is maintained as a feature
 - E.g. spelling error correction, part-of-speech tagging
- Inflected forms
 - Should walks and walk be treated as the same word?
 - » No...for most n-gram based systems
 - » based on the wordform (i.e. the inflected form as it appears in the corpus) rather than the lemma (i.e. set of lexical forms that have the same stem)

Counting words in corpora

- Need to distinguish
 - word types
 - » the number of distinct words
 - word tokens
 - » the number of running words
- Example
 - All for one and one for all.
 - 8 tokens (counting punctuation)
 - 6 types (assuming capitalized and uncapitalized versions of the same token are treated separately)

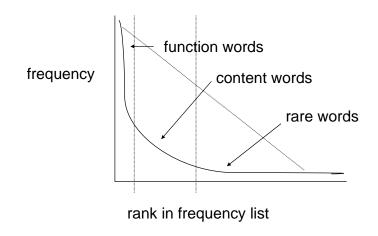
Topics for today

- Today
 - Introduction to generative models of language
 - » What are they?
 - » Why they're important
 - » Issues for counting words
 - » Statistics of natural language

How many words are there in English?

- Option 1: count the word entries in a dictionary
 - OED: 600,000
 - American Heritage (3rd edition): 200,000
 - Actually counting lemmas not wordforms
- Option 2: estimate from a corpus
 - Switchboard (2.4 million wordform tokens): 20,000 wordform types
 - Shakespeare's complete works: 884,647 wordform tokens; 29,066 wordform types
 - Brown corpus (1 million tokens): 61,805 wordform types → 37,851 lemma types
 - Brown et al. 1992: 583 million wordform tokens, 293,181 wordform types

How are they distributed?



Statistical Properties of Text

- Zipf's Law relates a term's frequency to its rank
 - Frequency ∞1/rank
 - There is a constant k such that freq * rank = k
- The most frequent words in one corpus may be rare words in another corpus
 - Example: "computer" in CACM vs. National Geographic
- Each corpus has a different, fairly small "working vocabulary"

These properties hold in a wide range of languages

Zipf's Law (Tom Sawyer)

Word	Freq.	Rank	$f \cdot r$	Word	Freq.	Rank	$f \cdot r$
	(f)	(<i>r</i>)			(f)	(r)	
the	3332	1	3332	turned	51	200	10200
and	2972	2	5944	you'll	30	300	9000
а	1775	3	5235	name	21	400	8400
he	877	10	8770	comes	16	500	8000
but	410	20	8400	group	13	600	7800
be	294	30	8820	lead	11	700	7700
there	222	40	8880	friends	10	800	8000
one	172	50	8600	begin	9	900	8100
about	158	60	9480	family	8	1000	8000
more	138	70	9660	brushed	4	2000	8000
never	124	80	9920	sins	2	3000	6000
Oh	116	90	10440	Could	2	4000	8000
two	104	100	10400	Applausive	1	8000	8000

Manning and Schutze SNLP

Zipf's Law

Useful as a rough description of the frequency distribution of words in human languages
Behavior occurs in a surprising variety of situations

English verb polysemy
References to scientific papers
Web page in-degrees, out-degrees
Royalties to pop-music composers